Inference on stochastic time-varying coefficient models

نویسندگان

  • L. Giraitis
  • G. Kapetanios
  • T. Yates
چکیده

Recently there has been considerable work on stochastic time-varying coefficient models as vehicles for modelling structural change in the macroeconomy with a focus on the estimation of the unobserved sample path of time series of coefficient processes. The dominant estimation methods, in this context, are various filters, such as the Kalman filter, that are applicable when the models are cast in state space representations. This paper examines alternative kernel based estimation approaches for such models in a nonparametric framework. The use of such estimation methods for stochastic time-varying coefficient models, or any persistent stochastic process for that matter, is novel and has not been suggested previously in the literature. The proposed estimation methods have desirable properties such consistency and asymptotic normality. In extensive Monte Carlo and empirical studies, we find that the methods exhibit very good small sample properties and can shed light on important empirical issues such as the evolution of inflation persistence and the PPP hypothesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Spatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients

In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...

متن کامل

Long-term Iran's inflation analysis using varying coefficient model

Varying coefficient Models are among the most important tools for discovering the dynamic patterns when a fixed pattern does not fit adequately well on the data, due to existing diverse temporal or local patterns. These models are natural extensions of classical parametric models that have achieved great popularity in data analysis with good interpretability.The high flexibility and interpretab...

متن کامل

Statistical Inference for Varying Coefficient Models

This dissertation contains two projects that are related to varying coefficient models. The traditional least squares based kernel estimates of the varying coefficient model will lose some efficiency when the error distribution is not normal. In the first project, we propose a novel adaptive estimation method that can adapt to different error distributions and provide an efficient EM algorithm ...

متن کامل

Kernel-based Inference in Time-varying Coefficient Cointegrating Regression

This paper studies nonlinear cointegrating models with time-varying coefficients and multiple nonstationary regressors using classic kernel smoothing methods to estimate the coefficient functions. Extending earlier work on nonstationary kernel regression to take account of practical features of the data, we allow the regressors to be cointegrated and to embody a mixture of stochastic and determ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010